
Yorman Leandro Trujillo Chacón - 20222209581

Descargamos Python

Se verifica que el sistema tiene las dependencias actualizadas y que no existen

binarios antiguos en ejecución.

Posteriormente, se comprueba la versión instalada de Python 3, la cual será

utilizada para crear el entorno virtual del proyecto.

Creamos la carpeta del proyecto

Se crea el directorio principal del proyecto dentro de la ruta /var/www/ y se asignan

los permisos correspondientes al usuario actual, garantizando que tenga acceso

completo a lectura y escritura.

Comandos utilizados:

sudo mkdir -p /var/www/proyecto_basico

sudo chown -R yorman:yorman /var/www/proyecto_basico

cd /var/www/proyecto_basico

Crear y activar el entorno virtual

En esta etapa se genera un entorno virtual de Python que permitirá gestionar las

dependencias del proyecto sin afectar las librerías globales del sistema.

El entorno se crea con venv y luego se activa dentro del directorio del proyecto.

Comandos:

python3 -m venv .venv

source .venv/bin/actívate

Al activarse, el prompt de la terminal muestra el prefijo (venv) indicando que el

entorno está activo.

Instalar Flask

Con el entorno virtual activo, se procede a instalar el framework Flask, que servirá

para crear el servidor web básico.

Durante la instalación se descargan las dependencias necesarias, como

Werkzeug, Jinja2 y MarkupSafe.

Comando:

pip install flask

Verificamos que Flask esté instalado

Se confirma la instalación correcta de Flask utilizando el siguiente comando:

pip show flask

Creamos el archivo app.py

Se crea el archivo principal del proyecto, donde se define la aplicación Flask.
Este archivo contendrá una ruta base (/) que devuelve un mensaje en formato
HTML para comprobar que el servidor funciona correctamente.

Verificamos que la aplicación funcione

Ejecutamos el proyecto con:

python3 app.py

Abrimos el puerto en el navegador

Finalmente, desde el navegador accedemos a la dirección:

http://127.0.0.1:5000

El mensaje “¡Hola, Flask está funcionando en Ubuntu!” aparece correctamente,

confirmando que el entorno Flask fue configurado y ejecutado con éxito.

Comenzamos configurando los puertos

En VirtualBox se configuraron las reglas de reenvío de puertos para permitir el

acceso a los servicios de la máquina virtual desde el sistema anfitrión.

El puerto 5000 se asignó para Flask (modo desarrollo).

El puerto 8080 se redirigió al puerto 80, usado por Apache2.

Esto garantiza que las peticiones HTTP externas sean correctamente redirigidas al

servidor web dentro del entorno Linux.

Creamos requirements.txt e instalamos las dependencias

Se creó un archivo requirements.txt con las librerías necesarias para el proyecto

Flask.

Creamos wsgi.py y verificamos que funcione

El archivo wsgi.py actúa como punto de entrada entre Flask y Gunicorn.

Su contenido fue probado con el siguiente comando para confirmar que la

aplicación Flask respondía correctamente:

Crear el archivo del servicio de Gunicorn

Se creó un archivo de configuración para Gunicorn en la ruta:

/etc/systemd/system/gunicorn_proyecto.service

Este archivo permite ejecutar automáticamente Gunicorn al iniciar el sistema.

Instalar Apache y módulos de proxy

Se instaló Apache2 y se habilitaron los módulos necesarios para configurar el

proxy inverso.

Esto permite que Apache redirija las solicitudes HTTP al puerto donde corre

Gunicorn (8000).

Comando utilizado:

sudo a2enmod proxy proxy_http

Crear el sitio proyecto_basico.conf

Se creó el archivo de configuración del sitio en:

/etc/apache2/sites-available/proyecto_basico.conf

Crear el archivo del sitio proyecto_basico.conf

En esta etapa se configura el archivo del sitio dentro de la ruta:

/etc/apache2/sites-available/proyecto_basico.conf

Luego, se activó el sitio con:

sudo a2ensite proyecto_basico.conf

sudo systemctl restart apache2

Esto permitió establecer la conexión entre Apache (puerto 80) y Gunicorn (puerto

8000).

Estructura final del proyecto

Después de crear todos los archivos y carpetas necesarias mediante Nano, la

estructura final del proyecto quedó así:

Vamos a correr el proyecto
Reiniciamos Gunicorn

Para que Gunicorn cargue la nueva estructura del proyecto y los archivos

actualizados, se ejecutan los siguientes comandos:

sudo systemctl daemon-reload

sudo systemctl restart gunicorn_proyecto

sudo systemctl status gunicorn_proyecto --no-pager

El estado active (running) confirma que el servicio se encuentra funcionando

correctamente.

Probamos si Flask responde

Para verificar la respuesta del servidor Gunicorn, se ejecuta una prueba local con

curl:

curl -I http://127.0.0.1:8000/

Verificación del proxy inverso (Apache)

A continuación, se valida la conexión del proxy inverso de Apache hacia Gunicorn

mediante el mismo comando curl:

curl -I http://127.0.0.1/

El resultado muestra nuevamente un estado 200 OK, confirmando que Apache

reenvía correctamente las solicitudes HTTP hacia Gunicorn.

Prueba final en el navegador

Finalmente, desde el sistema anfitrión se accede a la dirección:

http://127.0.0.1:8080

El navegador muestra la página con el mensaje:

http://127.0.0.1:8000/

¡Funciona vía Apache + Gunicorn!

Servidor listo para la demo. Estructura tipo paquete Flask.

Esto confirma que la aplicación Flask está funcionando correctamente a través de

Gunicorn y Apache2, cumpliendo con el objetivo del proyecto.

