Yorman Leandro Trujillo Chacdn - 20222209581
Descargamos Python

Se verifica que el sistema tiene las dependencias actualizadas y que no existen
binarios antiguos en ejecucion.

Posteriormente, se comprueba la version instalada de Python 3, la cual sera
utilizada para crear el entorno virtual del proyecto.

Running kernel seems to be up-to-date.

s are running outdated binaries.

ed hypervisor (gemu) hinaries on this host.

Creamos la carpeta del proyecto

Se crea el directorio principal del proyecto dentro de la ruta /var/www/ y se asignan
los permisos correspondientes al usuario actual, garantizando que tenga acceso
completo a lectura y escritura.

Comandos utilizados:
sudo mkdir -p /var/www/proyecto_basico

sudo chown -R yorman:yorman /var/www/proyecto_basico

cd /var/www/proyecto_basico
nrma sudo mkdir

Crear y activar el entorno virtual

En esta etapa se genera un entorno virtual de Python que permitird gestionar las
dependencias del proyecto sin afectar las librerias globales del sistema.

El entorno se crea con venv y luego se activa dentro del directorio del proyecto.
Comandos:
python3 -m venv .venv

source .venv/bin/activate

Al activarse, el prompt de la terminal muestra el prefijo (venv) indicando que el
entorno esta activo.

O mEn@yYarman: Ject as an3 -m Veny .WYeny

O mEnEYorman arsuusproyecto_basico® source (wvenwshinsactivate
' aroJecto_basicod

Instalar Flask

Con el entorno virtual activo, se procede a instalar el framework Flask, que servira
para crear el servidor web basico.

Durante la instalacion se descargan las dependencias necesarias, como
Werkzeug, Jinja2 y MarkupSafe.

Comando:

pip install flask

4. many linux 4.whl.metadata (&

ny. wh
Lwhl

Verificamos que Flask esté instalado
Se confirma la instalacion correcta de Flask utilizando el siguiente comando:

pip show flask

Home -
Author:
Buthor-ema i

fLoveny) Jorman@yorman: Avarsuonsproyecto_basicod

Creamos el archivo app.py
Se crea el archivo principal del proyecto, donde se define la aplicacion Flask.

Este archivo contendra una ruta base (/) que devuelve un mensaje en formato
HTML para comprobar que el servidor funciona correctamente.

GHU nano 7.2 app.py

return

if__name__ ==
app.runid

Verificamos que la aplicaciéon funcione

Ejecutamos el proyecto con:

python3 app.py

)/proyecto_basico$ python3 app.py

Abrimos el puerto en el navegador

Finalmente, desde el navegador accedemos a la direccion:

http://127.0.0.1:5000

El mensaje “jHola, Flask esta funcionando en Ubuntu!” aparece correctamente,
confirmando que el entorno Flask fue configurado y ejecutado con éxito.

O © 127.00.1:5000 x 4+
& G @O 127.00.1:5000

ihola, Flask esta funcionando en ubuntu!

Comenzamos configurando los puertos

En VirtualBox se configuraron las reglas de reenvio de puertos para permitir el
acceso a los servicios de la maquina virtual desde el sistema anfitrion.

El puerto 5000 se asigné para Flask (modo desarrollo).
El puerto 8080 se redirigié al puerto 80, usado por Apache2.

Esto garantiza que las peticiones HTTP externas sean correctamente redirigidas al
servidor web dentro del entorno Linux.

| ‘ .
| @' Reglas de reenvio de puertos x
Nombre Protocolo IP anfitrién Puerto anfitrion IPinvitado Puerto invitado O
&
Flask TCP 127.0.0.1 5000 5000 -
apache TCP 127.0.041 8080 _

T Interfaz de usuario
Puerto 1 Puerto 2 Puerto 3 Puerto 4

Aceptar Cancelar Ayuda

|: Carpetas compartidas

Creamos requirements.txt e instalamos las dependencias

Se cred un archivo requirements.txt con las librerias necesarias para el proyecto
Flask.

Creamos wsgi.py y verificamos que funcione
El archivo wsgi.py actia como punto de entrada entre Flask y Gunicorn.

Su contenido fue probado con el siguiente comando para confirmar que la
aplicacién Flask respondia correctamente:

ico% python -c “from 71 import app: print 0K WSGI

Crear el archivo del servicio de Gunicorn
Se cred un archivo de configuracion para Gunicorn en la ruta:
/etc/systemd/system/gunicorn_proyecto.service

Este archivo permite ejecutar automaticamente Gunicorn al iniciar el sistema.

(1344}

Instalar Apache y mdédulos de proxy

Se instalé Apache?2 y se habilitaron los médulos necesarios para configurar el
proxy inverso.

Esto permite que Apache redirija las solicitudes HTTP al puerto donde corre
Gunicorn (8000).

Comando utilizado:

sudo a2enmod proxy proxy_http

ems to be up-to-date.

need to be arted.

Mo containers need to be restarted.

MO Lser

Crear el sitio proyecto_basico.conf
Se cred el archivo de configuracién del sitio en:
/etc/apache?2/sites-available/proyecto_basico.conf
fmmmfpﬁngectn_t icof curl -I http:
116 GMT

‘html; chars

5] [INFO]
[INFO]

Crear el archivo del sitio proyecto_basico.conf
En esta etapa se configura el archivo del sitio dentro de la ruta:

/etc/apache?2/sites-available/proyecto _basico.conf

Luego, se activé el sitio con:
sudo a2ensite proyecto_basico.conf
sudo systemctl restart apache2

Esto permitié establecer la conexion entre Apache (puerto 80) y Gunicorn (puerto
8000).

O | @ 127.00.1:5000 x @@ 127.00.1:8080 x +

& O @® 127.0.0.1:8080

ihola, Flask esta funcionando en ubuntu!

Estructura final del proyecto

Después de crear todos los archivos y carpetas necesarias mediante Nano, la
estructura final del proyecto quedé asi:

ico® rm -t app.py reguiremens.txt

oF 1s -1

rements. txt

Vamos a correr el proyecto

Reiniciamos Gunicorn

Para que Gunicorn cargue la nueva estructura del proyecto y los archivos
actualizados, se ejecutan los siguientes comandos:

sudo systemctl daemon-reload
sudo systemctl restart gunicorn_proyecto
sudo systemctl status gunicorn_proyecto --no-pager

El estado active (running) confirma que el servicio se encuentra funcionando
correctamente.

Probamos si Flask responde

Para verificar la respuesta del servidor Gunicorn, se ejecuta una prueba local con
curl:

curl -l http://127.0.0.1:8000/

SuwgSproyecto_basico® cur

3 GMT

Verificacion del proxy inverso (Apache)

A continuacion, se valida la conexién del proxy inverso de Apache hacia Gunicorn
mediante el mismo comando curl:

curl -1 http://127.0.0.1/

El resultado muestra nuevamente un estado 200 OK, confirmando que Apache
reenvia correctamente las solicitudes HTTP hacia Gunicorn.

Prueba final en el navegador
Finalmente, desde el sistema anfitrion se accede a la direccion:
http://127.0.0.1:8080

El navegador muestrala pagina con el mensaje:

http://127.0.0.1:8000/

jFunciona via Apache + Gunicorn!
Servidor listo para la demo. Estructura tipo paquete Flask.

Esto confirma que la aplicacion Flask esta funcionando correctamente a través de
Gunicorn y Apache2, cumpliendo con el objetivo del proyecto.

M & PROYECTO FLASK X s

& O @ 127.0.0.1:8080

¢funciona via Apache + Gunicorn!

Servidor listo para la demo. Estructura Tipo paquete Flask.

